Maritime Education and Training - Are we on track?

19 Jan 2022 Institute News

From Seaways - Updating training for the digital era

MET - Are we on track?

Are we experiencing a XTE in our approach to maritime education and training?

Sukhjit Singh University of Gibraltar

Jillian Carson-Jackson The Nautical Institute

Vivian Rambarath-Parasram The University of Trinidad and Tobago

Mikael Lind Research Institutes of Sweden (RISE)

Wolfgang Lehmacher Anchor Group

Richard T Watson University of Georgia

Sandra Haraldson RISE

Omar Frits Eriksson The IALA World-Wide Academy

 

Cross Track Error (XTE or off course) is the distance that vessel is off the course either to port or starboard. It is usually caused by drift due to environmental factors. Those involved in maritime operation will understand how important it is to be aware of XTE, as it is at the core of corrective action.”

The maritime industry is experiencing a paradigm shift, operating in an ever changing environment influenced by digitalisation and decarbonisation. Technological developments, particularly the new digital technologies and ‘Industry 4.0’, also known as the fourth industrial revolution, are rapidly reshaping the maritime industry. As the industry responds to this shift, are we experiencing a XTE in our approach to maritime education and training?

Over time, knowledge that has been useful gradually loses close ties to practice as it becomes more tightly integrated with a body of scientific knowledge - a process that is known as ‘academic drift’. Monitoring academic drift is critical to ensuring the skills of maritime professionals are aligned with the changing needs of the industry. Maritime Education and Training (MET) must evolve to provide training, and retraining, that is relevant to practice.

The changing maritime scene

The ongoing pandemic has highlighted the indispensable role that the maritime industry plays in the global economy. Seafarers are at the heart of shipping and are the critical element in operating today’s modern and technologically sophisticated ships safely and efficiently. Maritime shipping operates in a complex eco-socio-technical environment, with stringent international regulations that reacts to economic, political, and socially variable conditions.

Safety of navigation services provided by authorities are becoming more digital and complex in their nature. New skills are needed both to consume and to provide such services, which may include highly automated and intelligent aids to navigation and vessel traffic services.

In its Industry Digitalisation Index, Morgan Stanley identified maritime transport as a ‘laggard sector’. Recent regulatory and sustainability demands have provided the momentum to fully embrace digital transformation. Within the constructs of global trade, the interactions of producers, manufacturers and consumers are in flux, and consequently, the expectations of maritime shipping are changing. However, the traditional structured and measured approach of implementing technologies is no longer able to keep pace with the rate of change. This change creates a need for new skills and competencies for maritime professionals – both afloat and ashore. As the IMO explains, shipping requires a quality, motivated and appropriately skilled labour force to thrive, and therefore, requires revision and alignment of the education and training of seafarers to meet the changing requirements. MET must provide appropriate knowledge and expertise to create a ‘future ready’ maritime workforce to meet the needs of diverse stakeholders (see below).

The emerging global maritime landscape is characterised by an enhanced degree of interaction and synchronisation among the multiple players engaged in the self-organised ecosystem of maritime transports. The performance of port community systems largely depends on the capacity, collaboration, and participation of the port community members and on the collaboration of the carriers.

Figure 1: Diverse Maritime Workforce stakeholders

Maritime education is evolving

Augmented reality, artificial intelligence, autonomous operations, and big data are becoming part of maritime operations. Traditionally, MET institutes cater to the requirements of the STCW regulations when developing curricula, focusing on the delivery of IMO Model Courses. The STCW Convention and Code (as amended) sets out the current international benchmark for the training and education of seafarers. The 2010 Manila amendments to the STCW Convention and Code marked a major revision aimed at bringing the Convention and Code up to date with recent and foreseeable developments. However, the pace of operational and technological advances in maritime operations continues to accelerate. Ships, ports and logistics hubs have become sophisticated sensor hubs and data generators. The ship and shore now digitally interact in real time. While compliance with STCW standards is essential, the industry’s diverse stakeholders need maritime education and training that aligns with these ongoing technological changes and raises the industry’s capital productivity.

Changing technology and customer expectations requires an MET course correction. Traditional curriculum design influenced by the technological integration needs to reflect, and be inspired by, the ongoing innovation in the industry. The use of simulators in maritime education and training, for instance, has been an essential component for developing seafarer skills and competencies for decades. Emerging immersive technologies, such as virtual reality (VR) and augmented reality (AR) create new and exciting possibilities for maritime training.

Digitalisation and automation are transforming the shipping sector. Ships, ports and maritime logistics are increasingly data enabled and need a work force that can use data analytics to turn data streams into information for enhanced decision making. Employees at all levels need new competencies to effectively manage a digitally enabled sustainable transport system.

A curriculum for the future

The theme of maritime informatics is uniting practitioners and academics to jointly contribute towards upgrading the human capital required by an increasingly digital industry. Environmental and technological changes demand a series of perspective transitions to training, as depicted in the diagrams on the opposite page.

Developing economies

A significant percentage of the world’s seafarers come from the developing economies. Due to the lack of institutional infrastructure and capacity, MET institutions in these economies struggle to meet even existing standards. It is imperative to address this lack of capability along with ensuring that knowledge transfers are nurtured through multilateral relationships that cross the digital divide. There are opportunities to develop cooperative endeavours, making effective use of tools and technology to close the existing gap. It is time to facilitate a truly global digital revolution in the maritime sector to build a maritime workforce that has the skill set to embrace the range of environmental, social, and technological developments.

Education in transition

The world’s maritime educational institutions need to respond to the current eco-socio-technical disruptions by producing relevant, industry-ready graduates with ‘future ready’ skill sets. Training must evolve to be cognizant of the impacts of the fourth industrial revolution on the maritime industry and the role of MET in enabling the adoption and implementation of relevant technology and addressing new expectations. Harnessing these capabilities is critical to deliver digitalised and decarbonised future-ready ships and ports. Revolutions are an abrupt change in past practices, and we assert that the maritime sector’s future will be determined by its willingness to redirect the course of established MET patterns to get on track for a productive future.

A fully referenced version of this article is available on request from [email protected]

Please click the below image to view in full screen

 

About the authors

Captain Sukhjit Singh is an experienced master mariner and applied researcher with over 25 years in the shipping industry and maritime sector. He is also current Head of School (Maritime Science) at the University of Gibraltar and supports various international capacity building projects as a technical expert.

Jillian Carson-Jackson is an experienced navigation officer, maritime professional and author of ‘The Simulation Instructor’s Handbook’ (published by the Nautical Institute). She is active in both training and digital developments with a focus on evolving online training opportunities and digital data developments for the maritime industry.

Vivian Rambarath-Parasram is an Attorney at Law with over 25 years’ experience in maritime law, international environmental law, corporate governance and commercial law. She has been affiliated with The University of Trinidad and Tobago since 2007 and is currently heading the Centre for Maritime and Ocean Studies.

Mikael Lind is the world’s first Professor of Maritime Informatics and is engaged at Chalmers, Sweden, and is also Senior Strategic Research Advisor at Research Institutes of Sweden (RISE). He serves as an expert for World Economic Forum, Europe’s Digital Transport Logistic Forum (DTLF), and UN/CEFACT. He is the co-editor of the first book on maritime informatics and the follow-up book recently published by Springer.

Wolfgang Lehmacher is operating partner at Anchor Group. The former head of supply chain and transport industries at the World Economic Forum and President and CEO Emeritus of GeoPost Intercontinental, he is also an advisory board member of The Logistics and Supply Chain Management Society, ambassador of The European Freight and Logistics Leaders’ Forum, and founding member of the thinktanks Logistikweisen and NEXST.

Richard Watson is a Regents Professor and the J. Rex Fuqua Distinguished Chair for Internet Strategy at the University of Georgia. He is a former President of the Association for Information Systems and was awarded its highest honor, a LEO, for his achievements in information systems.

Sandra Haraldson is Senior Researcher at Research Institutes of Sweden (RISE) and has driven several initiatives on digital collaboration, multi-business innovation, and sustainable transport hubs, such as the concept of Collaborative Decision Making (e.g. PortCDM, StationCDM, YardCDM) enabling parties in transport ecosystems to become coordinated and synchronised by digital data sharing.

Omar Frits Eriksson has over 30 years’ experience of working with safety of navigation. He is the Dean of the IALA World-Wide Academy and deputy Secretary-General of IALA, which provides model courses for Aids to Navigation managers and VTS training.

Illustrations: Sandra Haraldson

To read the full edition of Seaways please click here

The Nautical Institute is an independent, international body promoting the standing of the maritime profession afloat and ashore. The objects of the Institute are to promote and co-ordinate in the public interest the development of nautical studies, so as to encourage and promote a high standard of qualification, competence and knowledge among those involved in the control of sea-going craft.

Seaways magazine is one of the many benefits of being a member of The Nautical institute. To learn more or to sign up for membership, please click here